Detailed Course Outline
Section 1: Machine learning basics
- Classical programming vs. machine learning approach
- What is a model?
- Algorithm features, weights, and outputs
- Machine learning algorithm categories
- Supervised algorithms
- Unsupervised algorithms
- Reinforcement learning
Section 2: What is deep learning?
- How does deep learning work?
- How deep learning is different
Section 3: The Machine Learning Pipeline
- Overview
- Business problem
- Data collection and integration
- Data processing and visualization
- Feature engineering
- Model training and tuning
- Model evaluation
- Model deployment
Section 4: What are my next steps?
- Resources to continue learning