Cloudera Data Scientist Training (DST) – Details

Detaillierter Kursinhalt

Data Science Overview
  • What Data Scientists Do
  • What Process Data Scientists Use
  • What Tools Data Scientists Use
Cloudera Data Science Workbench (CDSW)
  • Introduction to Cloudera Data
Science Workbench
  • How Cloudera Data Science
Workbench Works
  • How to Use Cloudera Data Science
Workbench
  • Entering Code
  • Getting Help
  • Accessing the Linux Command Line
  • Working with Python Packages
  • Formatting Session Output
Case Study
  • DuoCar
  • How DuoCar Works
  • DuoCar Datasets
  • DuoCar Business Goals
  • DuoCar Data Science Platform
  • DuoCar Cloudera EDH Cluster
  • HDFS
  • Apache Spark
  • Apache Hive
  • Apache Impala
  • Hue
  • YARN
  • DuoCar Cluster Architecture
Apache Spark
  • Apache Spark
  • How Spark Works
  • The Spark Stack
  • Spark SQL
  • DataFrames
  • File Formats in Apache Spark
  • Text File Formats
  • Parquet File Format
Summarizing and Grouping DataFrames
  • Summarizing Data with Aggregate
  • Functions
  • Grouping Data
  • Pivoting Data
Window Functions
  • Introduction to Window Functions
  • Creating a Window Specification
  • Aggregating over a Window Specification
Exploring DataFrames
  • Possible Workflows for Big Data
  • Exploring a Single Variable
  • Exploring a Categorical Variable
  • Exploring a Continuous Variable
  • Exploring a Pair of Variables
  • Categorical-Categorical Pair
  • Categorical-Continuous Pair
  • Continuous-Continuous Pair
Apache Spark Job Execution
  • DataFrame Operations
  • Input Splits
  • Narrow Operations
  • Wide Operations
  • Stages and Tasks
  • Shuffle
Processing Text and Training and Evaluating Topic Models
  • Introduction to Topic Models
  • Scenario
  • Extracting and Transforming Features
  • Parsing Text Data
  • Removing Common (Stop) Words
  • Counting the Frequency of Words
  • Specifying a Topic Model
  • Training a topic model using Latent Dirichlet Allocation (LDA)
  • Assessing the Topic Model Fit
  • Examining a Topic Model
  • Applying a Topic Model
Training and Evaluating Recommender Models
  • Introduction to Recommender Models
  • Scenario
  • Preparing Data for a Recommender Model
  • Specifying a Recommender Model
  • Spark Interface Languages
  • PySpark
  • Data Science with PySpark
  • sparklyr
  • dplyr and sparklyr
  • Comparison of PySpark and sparklyr
  • How sparklyr Works with dplyr
  • sparklyr DataFrame and MLlib Functions
  • When to Use PySpark and sparklyr
Running a Spark Application from (CDSW)
  • Overview
  • Starting a Spark Application
  • Reading Data into a Spark SQL Data Frame
  • Examining the Schema of a Data Frame
  • Computing the Number of Rows and
Columns of a DataFrame
  • Examining Rows of a DataFrame
  • Stopping a Spark Application
Inspecting a Spark SQL DataFrame
  • Overview
  • Inspecting a DataFrame
  • Inspecting a DataFrame Column
  • Inspecting a Primary Key Variable
  • Inspecting a Categorical Variable
  • Inspecting a Numerical Variable
  • Inspecting a Date and Time Variable
Transforming DataFrames
  • Spark SQL DataFrames
  • Working with Columns
  • Selecting Columns
  • Dropping Columns
  • Specifying Columns
  • Adding Columns
  • Changing the Column Name
  • Changing the Column Type
Monitoring, Tuning, and Configuring Spark Applications
  • Monitoring Spark Applications
  • Persisting DataFrames
  • Partitioning DataFrames
  • Configuring the Spark Environment
Machine Learning Overview
  • Machine Learning
  • Underfitting and Overfitting
  • Model Validation
  • Hyperparameters
  • Supervised and Unsupervised Learning
  • Machine Learning Algorithms
  • Machine Learning Libraries
  • Apache Spark MLlib
Training and Evaluating Regression Models
  • Introduction to Regression Models
  • Scenario
  • Preparing the Regression Data
  • Assembling the Feature Vector
  • Creating a Train and Test Set
  • Specifying a Linear Regression Model
  • Training a Linear Regression Model
  • Examining the Model Parameters
  • Examining Various Model Performance Measures
  • Examining Various Model Diagnostics
  • Applying the Linear Regression Model to the Test Data
  • Evaluating the Linear Regression Model on the Test Data
  • Plotting the Linear Regression Model
  • Training a Recommender Model using Alternating Least Squares
  • Examining a Recommender Model
  • Applying a Recommender Model
  • Evaluating a Recommender Model
  • Generating Recommendations
Working with Machine Learning Pipelines
  • Specifying Pipeline Stages
  • Specifying a Pipeline
  • Training a Pipeline Model
  • Querying a Pipeline Model
  • Applying a Pipeline Model
Deploying Machine Learning Pipelines
  • Saving and Loading Pipelines and Pipeline Models in Python
  • Loading Pipelines and Pipeline Models in Scala
  • Working with Rows
  • Ordering Rows
  • Selecting a Fixed Number of Rows
  • Selecting Distinct Rows
  • Filtering Rows
  • Sampling Rows
  • Working with Missing Values
Transforming DataFrame Columns
  • Spark SQL Data Types
  • Working with Numerical Columns
  • Working with String Columns
  • Working with Date and Timestamp Columns
  • Working with Boolean Columns
Complex Types
  • Complex Collection Data Types
  • Arrays
  • Maps
  • Structs
User-Defined Functions
  • User-Defined Functions
  • Defining a Python Function
  • Registering a Python Function as a
  • User-Defined Function
  • Applying a User-Defined Function
Reading and Writing Data
  • Reading and Writing Data
  • Working with Delimited Text Files
  • Working with Text Files
  • Working with Parquet Files
  • Working with Hive Tables
  • Working with Object Stores
  • Working with pandas DataFrames
Combining and Splitting DataFrames
  • Joining DataFrames
  • Cross Join
  • Inner Join
  • Left Semi Join
  • Left Anti Join
  • Left Outer Join
  • Right Outer Join
  • Full Outer Join
  • Applying Set Operations to
  • DataFrames
  • Splitting a DataFrame
Training and Evaluating Classification Models
  • Introduction to Classification Models
  • Scenario
  • Preprocessing the Modeling Data
  • Generate a Label
  • Extract, Transform, And Select Features
  • Create Train and Test Sets
  • Specify A Logistic Regression Model
  • Train the Logistic Regression Model
  • Examine the Logistic Regression Model
  • Evaluate Model Performance on the Test Set
Tuning Algorithm Hyperparameters Using Grid Search
  • Requirements for Hyperparameter Tuning
  • Specifying the Estimator
  • Specifying the Hyperparameter Grid
  • Specifying the Evaluator
  • Tuning Hyperparameters using Holdout Cross-validation
  • Tuning Hyperparameters using K-fold Cross-validation
Training and Evaluating Clustering Models
  • Introduction to Clustering
  • Scenario
  • Preprocessing the Data
  • Extracting, Transforming, and Selecting Features
  • Specifying a Gaussian Mixture Model
  • Training a Gaussian Mixture Model
  • Examining the Gaussian Mixture Model
  • Plotting the Clusters
  • Exploring the Cluster Profiles
  • Saving and Loading the Gaussian
  • Mixture Model
Overview of sparklyr
  • Connecting to Spark
  • Reading Data
  • Inspecting Data
  • Transforming Data Using dplyr Verbs
  • Using SQL Queries
  • Spark DataFrames Functions
  • Visualizing Data from Spark
  • Machine Learning with MLlib
Introduction to Additional CDSW Features
  • Collaboration
  • Jobs
  • Experiments
  • Models
  • Applications